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Abstract. We calculate the influence of dynamical exchange effects on the response properties and the
static properties of a two-dimensional many-polaron gas. These effects are not manifested in the random-
phase approximation which is widely used in the analysis of the many-polaron system. Here they are
taken into account by using a dielectric function derived in the time-dependent Hartree-Fock formalism.
At weak electron-phonon coupling, we find that dynamical exchange effects lead to substantial corrections
to the random-phase approximation results for the ground state energy, the effective mass, and the optical
conductivity of the polaron system. Furthermore, we show that the reduction of the spectral weight of
the optical absorption spectrum at frequencies above the longitudinal optical phonon frequency, due to
many-body effects, is overestimated by the random-phase approximation.

PACS. 71.45.Gm Exchange, correlation, dielectric and magnetic response functions, plasmons –
71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
71.38.Fp Large or Fröhlich polarons

1 Introduction

Although the static and dynamic properties of a single po-
laron have been [1,2] (and still are [3]) extensively stud-
ied, the properties of an interacting polaron system, e.g.
its optical absorption [4,5], are less well understood. Thus
far, the many-polaron system has been studied mainly in
the Hartree-Fock approximation and in the random-phase
approximation (RPA) [6–9], even though in reference [10]
it was shown that in three dimensions (3D) the polaron
energy and effective mass are influenced by screening ef-
fects beyond RPA. In this paper, we investigate dynamical
exchange effects in both static properties (energy and ef-
fective mass) and response properties (optical absorption)
of the two-dimensional (2D) polaron system.

However, although our formalism is appropriate for the
description of an interacting electron (or polaron) gas, it
does not allow to investigate the 2D Wigner solid phase
formed for example by electrons on a helium surface. Also
the study of the many small-polaron gas and bipolarons
in quasi-2D systems such as the copper oxide planes in
high-Tc cuprate superconductors [11–14] lies beyond the
scope of our approach in its current form.

A convenient formalism to take into account many-
body effects in the polaron system relies on containing
these effects in the structure factor [6]. This approach,
reminiscent of the Feynman-Bijl treatment of superfluid
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helium-4, was first developed to calculate the ground state
energy of a many-polaron system [6], and has later been
applied to the optical absorption of this system [15]. The
2D dynamic structure factor can be written as

S2D (q, ω) = − �

nvq
Im

(
1

ε (q, ω)

)
, (1)

with vq = e2/(2ε∞q) the Fourier transform of the bare
Coulomb interaction in 2D, n the surface density of charge
carriers, ε∞ the dielectric constant at high frequency,
and ε(q, ω) the dielectric function of the system of charge
carriers. Previous work [6–9,15] relied on the RPA dielec-
tric function:

εRPA(q, ω) = 1 + Q0(q, ω), (2)

where Q0(q, ω) is the 2D Lindhard polarizability and is
known in closed form [16]. A more accurate result for
the dielectric function is obtained by introducing the fre-
quency dependent local field correction G(q, ω):

ε(q, ω) = 1 +
Q0(q, ω)

1 − G(q, ω)Q0(q, ω)
. (3)

In the 3D case, the local field correction was derived in the
framework of the dynamical exchange decoupling (DED)
method [17]. This method, based on the time-dependent
Hartree-Fock formalism, was recently extended to the 2D
case in references [18,19]. This leads to an improved di-
electric function, εDED(q, ω), that can be used to include
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dynamical exchange effects in the analysis of the many-
polaron system. The DED result for the dielectric func-
tion is markedly different from the results obtained in the
RPA formalism, Hubbard’s formalism [20] and the formal-
ism of Singwi et al. [21]. In 3D these different approaches
can be compared to experiment: measurements of the
dynamic local field correction by Larson and co-workers
[22,23] have shown that the 3D DED approach [17] leads
to superior results.

In this work, we use the DED dielectric function in
combination with the formalism describing the many-
body effects in a polaron system through the structure fac-
tor. In Section 2, we investigate the dynamical exchange
effects on the optical absorption of the many-polaron sys-
tem. From the optical conductivity the effective mass of
the polaron as a function of the density is derived through
a sum-rule in Section 3. Finally, in Section 4, the ground
state energy of the interacting polaron system is calcu-
lated beyond RPA. As we shall show, including dynamical
exchange effects leads to non-negligible corrections to all
these quantities.

2 Optical absorption of the interacting
2D polaron system

The optical absorption of an interacting system of Fröhlich
polarons in the weak-coupling regime was investigated
in [7,15]. The optical conductivity in 2D is given by [15]

Re[σ2D(ω)] = α
ne2

4ω3

∞∫
0

dq q2S2D(q, ω − ωLO), (4)

where e is the electron charge, ωLO is the longitudinal op-
tical (LO) phonon frequency and α is the dimensionless
Fröhlich coupling constant determining the strength of the
electron-phonon interaction. Note that a delta-function
peak at ω = 0, omitted in (4), is present in the optical
absorption. The influence of the Fermi statistics and the
screened Coulomb interactions between the electrons are
taken into account through the structure factor S2D ap-
pearing in expression (4). Thus far, the effect of electron-
electron interactions on the optical absorption of a many-
polaron gas has been investigated only in the framework of
RPA [4,7,15]. Nevertheless, expression (4) is not restricted
to the RPA approximation: any form of the dynamic struc-
ture factor can be introduced in the integrand. Here, we
will use the results obtained for the dielectric function in
the DED formalism [19] instead.

Using expression (1) and the DED result for the di-
electric function, we can rewrite (4) as

Re [σ2D (ν)] = −α
N

(ν/νLO)3

×
∞∫
0

dk k3 Im
(

1
εDED (k, ν − νLO)

)
, (5)

where k = q/kF and v = �ω/(2EF ) are dimensionless
wave numbers and frequencies based on the Fermi wave
vector kF and the Fermi energy EF , respectively. The pref-
actor

N =
n (�ωLO)2 e2

2m2
bω

3
LO

√
�

2mbωLO

4πε∞k2
F

e2
(6)

contains material constants (the band mass mb, the LO
phonon frequency ωLO and the high-frequency permittiv-
ity ε∞) and has dimensions of optical conductivity. Ex-
pression (5) for the optical absorption allows to easily sub-
stitute available results for the dielectric function.

The DED structure factor can be interpreted as a
sum of two contributions, namely a contribution from the
single-particle excitations (the Landau continuum) and a
contribution from the plasmon excitations. We can write

Im
[

1
εDED (k, ν)

]
= −Apl(k)δ[ν − νpl(k)]

+ Im
[

1
εcont (k, ν)

]
, (7)

where νLO is the LO phonon frequency in units of 2EF /�

and νpl(k) is the plasmon dispersion defined by ε(k, νpl) =
0. The plasmon excitations in our approach lead to delta-
functions, with a strength Apl(k), in the frequency de-
pendence of the structure factor. Also the optical con-
ductivity can be separated in a contribution due to the
single-particle excitations and a part coming from the
plasmon branch:

Re[σ2D(ν)] = Re
[
σpl

2D(ν)
]

+ Re
[
σcont

2D (ν)
]
, (8)

with

Re[σpl
2D(ν)] = α

N
(ν/νLO)3

k3
0Apl(k0)
ν′
pl(k0)

, (9)

Re[σcont
2D (ν)] = −α

N
(ν/νLO)3

×
∞∫
0

dk k3 Im
(

1
εcont (k, ν − νLO)

)
. (10)

Here, k0 is the wave vector at which ν−νLO = νpl(k), and
ν′
pl = dνpl/dk is the derivative of the plasmon frequency

with respect to the wave vector. In the 2D electron gas, the
plasmon branch νpl(k) lies close to the edge of the Landau
continuum, k2/2 + k. Figure 1 compares the plasmon dis-
persion in the DED approach to the dispersion in the RPA
approach for several values of rs. For small k values the
plasmon frequency in DED is lower than in RPA. Further-
more, in DED longer wave length plasmons are present.
The oscillator strength Apl(k) of the plasmon branch can
be obtained straightforwardly using the f -sum rule. If we
substitute (7) in the f -sum rule,

−
∞∫
0

ν Im
(

1
εDED (k, ν)

)
dν =

π

2
rsk√

2
, (11)
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Fig. 1. The plasmon dispersion νpl(k) in a 2D electron gas is
shown as a function of the wave number k (in units of kF ),
relative to the edge of the Landau continuum k2/2 + k, for
different values of rs. The full curves correspond to the DED
result, and the dashed curves to the RPA result. In the inset,
the location of the plasmon branch and the Landau continuum
(hatched area) are shown.

we can find an expression for the oscillator strength of the
plasmon branch:

Apl(k) =
1

νpl(k)

(
π

2
rsk√

2
− M1

)
, (12)

where

M1 = −
∞∫
0

ν Im
(

1
εcont (k, ν)

)
dν, (13)

is the first frequency moment of the Landau continuum
contribution only. In Figure 2, we compare the oscillator
strength of the plasmon branch in RPA and DED for sev-
eral values of rs. At small k the difference between the
strength of the plasmons in RPA and DED is negligible.
As k increases, a difference appears: the maximum oscil-
lator strength for the plasmon branch in DED is reached
at a smaller wave vector. Compared to RPA, the oscilla-
tor strength of the DED plasmons shows a long tail as a
function of k.

In Figure 3 the optical absorption due to the plasmon
contribution is shown for several relevant values of the
density n of a two dimensional polaron gas, using the ma-
terial parameters for GaAs (ε∞ = 10.8, mb = 0.0657 me,
�ωLO = 36.77 meV, aBohr = 8.78 nm). The presence of
the shorter wave length plasmons in DED as compared
to RPA shifts the spectral weight to higher frequencies.
Nevertheless, both in RPA and DED the contribution of
plasmons to the optical absorption of the many-polaron
gas is small in comparison with the contribution of the
single-particle excitations. The total optical absorption is
shown in Figure 4, again for different surface densities of
polarons in GaAs. Although the Landau continuum occu-
pies the same region of the {k, ν}-plane in the DED and
RPA approaches, the spectral weight of the structure fac-
tor is distributed differently. As can be seen in Figure 4,

Fig. 2. The oscillator strength Apl (k) of the plasmon excita-
tion in a 2D electron gas at νpl(k) is shown as a function of the
wave number k (in units of kF ), for different values of rs. The
full curves correspond to the DED result, the dashed curves to
the RPA result.

Fig. 3. The contribution of the plasmon excitations to the op-
tical absorption of the many-polaron gas is shown as a function
of the frequency ν in units of the LO phonon frequency νLO,
for rs = 0.64 (corresponding to n = 1012 cm−2), rs = 0.91
(n = 5 × 1011 cm−2), and rs = 1.17 (n = 3 × 1011 cm−2). Full
curves represent the DED result, and dashed curves the RPA
result.

this leads to a measurable difference between the DED
and RPA results. Comparing both the DED and RPA op-
tical absorption with the single-polaron absorption [24],
we find that the RPA result overestimates the damping
due to many-body effects.

3 Effective mass of the polaron in DED

From Figure 4, it is clear that the spectral weight of the
optical absorption in the region beyond the single-phonon
gap (ω > ωLO) is different for each of the approaches
(DED, RPA and single-polaron). This may seem surpris-
ing at first glance, since the f -sum rule imposes that the
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Fig. 4. The total optical absorption of a 2D many-polaron sys-
tem in GaAs is shown as a function of the frequency ν in units
of the LO phonon frequency νLO, for rs = 0.64 (corresponding
to n = 1012 cm−2) and rs = 1.17 (n = 3×1011 cm−2). Results
are shown for the DED formalism (crosses), the RPA formal-
ism (dashed curves) and for the single-polaron case (dotted
curves). The noise present in the results is due to the numeri-
cal treatment. The delta-function in the optical absorption at
ν = 0 is not shown in this figure.

total spectral weight is a constant:
∞∫
0

Re[σ(ω)]dω =
πNe2

2mb
. (14)

It is important to keep in mind that the optical absorp-
tion of the polaron system shows a delta-function in the
origin (ω = 0), not shown in Figure 4. The total spec-
tral weight is distributed between this delta-function peak
and the optical absorption spectrum beyond the single-
phonon gap [25]. The spectral weight of the delta-function
is related to the polaron effective mass m∗ in such a way
that [25]

∞∫
ω>ωLO

Re[σ(ω)]dω =
πNe2

2mb

(
1 − mb

m∗
)

. (15)

Thus, a change in the spectral weight allotted to the
ω > ωLO region of the optical conductivity indicates a
change in the effective mass of the polarons. The electron-
phonon coupling increases the effective mass of a sin-
gle polaron by ∆m = m∗ − mb. The well-known single-
polaron result for this effective mass increase in 2D is
∆m/mb = απ/8. In Figure 5, we show the effective mass
increase ∆m/(αmb) = (m∗/mb − 1)/α as a function of
the surface density of polarons in GaAs. Both the RPA
result (dashed curve, cf. [7–9,26]) and the DED result
(full curve) approach the one-polaron result in the limit of
small density. As the surface density of polarons increases,
∆m decreases, more rapidly in RPA than in DED.

The fractional change ∆mDED/∆mRPA is shown in the
inset of Figure 5, and indicates that there is roughly a 15%

Fig. 5. The difference between the polaronic effective mass
and the band mass ∆m = m∗−mb is shown as function of the
surface density n of the 2D polaron system in GaAs. The rs

values corresponding to the densities n are reported on the
top axis. The DED result is plotted as a full curve, the RPA
result as a dashed curve, and the one-polaron result as a dot-
ted line. The inset shows the ratio between the effective mass
enhancement in DED and RPA as a function of density.

difference between the effective mass increase predicted by
DED and that predicted by RPA. This is consistent with
the increase in spectral weight of the optical absorption
at ω > ωLO in DED as compared to RPA: if less spectral
weight is present in the region ω > ωLO, the delta-function
in the origin must carry more spectral weight, indicating
an increase in effective mass.

4 Ground-state energy of the interacting
2D polaron system

A general expression for the ground state energy per par-
ticle of an interacting polaron gas at weak coupling was
derived in reference [6]:

E = Eel −
∑
q

|Vq|2S2D(q)

�ωLO +
(�q)2

2mbS2D(q)

. (16)

In this expression Eel is the energy contribution per par-
ticle of the system of charge carriers without electron-
phonon coupling, and the second term is the polaron
contribution. The 2D Fröhlich interaction amplitude
appearing in this expression is

|Vq|2 =
(�ωLO)2

q

2πα

A

√
�

2mbωLO
, (17)

with A the surface of the 2D system. Whereas the optical
conductivity depends on the dynamic structure factor, the
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Fig. 6. The static structure factor of a 2D electron gas is shown
as a function of the wave number k (in units of kF ), in the
Hartree-Fock approximation (dotted curve), in RPA (dashed
curves, at rs = 0.5 and 2.0), and in DED (full curves, at rs =
0.5 and 2.0).

ground state energy depends on the static structure factor

S2D(q) =

∞∫
0

dω

π
S2D(q, ω)

= − �

nπvq

∞∫
0

Im
(

1
ε (q, ω)

)
dω. (18)

Expressed in dimensionless variables for the wave number
and the frequency, this is

S2D(k) = −
√

2k
πrs

∞∫
0

Im
(

1
ε (k, ν)

)
dν. (19)

A comparison between the static structure factor in RPA
and DED is shown in Figure 6. Around k = 2, the DED
static structure factor shows a transition to the long wave
length behavior [18,19].

The shift in ground state energy per particle due to
the electron-phonon coupling ∆Epol = E(α) − E(α = 0)
is given by [6]:

∆Epol = −α�ωLO

∞∫
0

dk γ
[S2D(k)]2

S2D(k) + γ2k2
. (20)

with γ = kF /kLO and kLO =
√

2mbωLO/�. The result for
the polaronic shift in the ground state energy per parti-
cle, as a function of the Wigner-Seitz radius rs, is shown
in Figure 7 for different approaches. The material param-
eters for GaAs were used for this figure. If no many-body
effects are taken into account, the 2D polaronic energy
per particle is −(π/2)α�ωLO in the weak coupling regime.
If many-body effects are taken into account on the level
of the Hartree-Fock approximation, we get a monotonous

Fig. 7. The polaronic ground state energy in a 2D polaron sys-
tem in GaAs is plotted as a function of rs in the Hartree-Fock
approximation (dash-dotted curve), in RPA (dashed curve)
and in DED (full curve). The dotted line indicates the one-
polaron result.

decreasing energy as rs increases, while the RPA approx-
imation leads to a minimum in the polaronic energy at
rs = 1.59, with E/N = −0.70 α�ωLO. We find that in-
cluding dynamical exchange effects lowers |∆Epol| with
respect to RPA, and shifts the energy minimum to slightly
lower density: rs = 1.61, where E/N = −0.77 α�ωLO. So,
using an improved dielectric function as compared to RPA
leads to a change of ca. 10% in the ground state energy.

5 Conclusions

Efforts to describe many-body effects in the polaron
system have thus far relied strongly on the RPA ap-
proach [6–9,15,23], even though there have been indica-
tions that inclusion of a static local field correction modi-
fies the ground state energy and the effective mass of the
polarons [10]. In this paper, we use a dielectric function
that includes a frequency-dependent local field correc-
tion derived in the time-dependent Hartree-Fock formal-
ism [17–19]. We find that taking into account dynami-
cal exchange effects reveals important corrections at weak
coupling to the optical absorption of the polaron system,
the effective mass of the polarons and the ground state
energy of the polaron system. In GaAs, estimates of the
effective mass based on RPA are roughly 15% off from the
improved results, estimates of the ground state energy dif-
fer roughly 10%. Furthermore, we show that in the optical
absorption, RPA considerably overestimates the reduction
of spectral weight due to the many-body effects.
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